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ABSTRACT 

A method has been developed for calculating the Madehmg constant- for a 
sodium chloride lattice.. In this method, a reference ion is selected and all other ions 
tire placed in groups around the reference ion. To include ions in all locations, seven 
types of groups are necessary. Recursion formulas are obtained to compute the 
effect of each group of ions and the Madelung constant is computed from the total 
effect produced by a11 the groups. A total of 29 cubical shells of ions around the 
reference ion were used in the calculation. The computation produces an oscillating 
function which aIternately goes above and below the actual Madelung constant as 
the computation is expanded to include each successive shell of ions. A numerical 
method is described to obtain the average value of the oscillating function. A value 
of the Madelung constant of 1.74759 results from the abbreviated calculation. 

INTRODUCTION 

.The Madelung constant, A, is of fundamental importance in considering the 
factors affecting lattice energies in crystals. That parameter takes into account the 
geometrical arrangement of ions in the lattice. The Madelung constant is a function 
only of the geometry of the crystal. However, some authors also include a factor to 
correct for a different ratio of cations to anions in the formula’. As a physical quantity, 
the Madelung constant for a 1: 1 salt gives the ratio of the energy released when 1 mole 
of lattice is formed to that released when 1 mole of ion pairs is formed from the 
gaseous ions. 

EvaIuatibn of the Madelung constant is, in principle, a straightforward proce- 
dure2* 3. The usual way is to consider the electrical potential generated at a reference 
ion in the crystal and then arriving at a series of terms which take into account the 
number of ions and their respective distances from the reference ion. For the sodium 
chloride structure, such a series of terms has as the fist few members 
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This series. converges only 
have been employed4- 6. 

very slowly. Various techniques for obtaining the sum 

However, a major difficulty arises when a large number of ions is considered 
as to how to derive-all the terms necessary to evaluate the Madelung constant. In one 
method, a Gaussian distribution of charge is considered to reside at each lattice point 
and these Gaussian distributions are combined to produce the potentia14* ‘_ However, 
this combination of overlapping Gaussian distributions is complex and involves a 
choice of the ratio of the width to height of the Gaussian. 

In the present paper, we present a geometrical approach to calculating the 
MadeIung constant for the sodium chloride lattice which makes use of the fact that 
al1 the ions in this type of lattice can be grouped into a limited number of areas 
within the overall lattice. Thus, it is possible to generate recursion relationships to 
take into account the effect of each area upon the summation. 

MEJXOD 

The procedure used .for evaluation of the Madelung constant consists of 
choosing a reference ion (RI) of positive charge around which cubical shells of ions 
are considered. Fig&e 1 shows the arrangement of ions in a layer of such a crystal. 
The value of A depends on the arrangement and respective distance of ions from the 
RI. The, Madelung constant for a particular structure is the summation of series 
of terms which are functions of the numbers of ions and the reciprocal of the distance 
of separation. 

If one starts with the RI at the center and constructs the first cubical shell 
(S = l), that shell contains three ions along each edge. It therefore contains a total of 
27 ions (26 plus RI). However, it contains 12 positive ions but 14 negative ions. 
Similarly, the second shell (S = 2) is a cube having five ions on an edge with RI at 
the center and$t>ontains 125 ions. The number of ions in any cubic shell is computed 
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Fig. 1. A layer in the NaCl Iattice. The numbered areas refer to &&IS. (l-7) which give the contribu- 
tions to the Madehmg constanr from ions in each region, respectiveIy_ 
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TABLE 1 

IONIC COMPOSlTION OF SHELLS AROUND THE REFERENCE ION, RI 

SheU, S No. of ions No. of ions in No. of No. of Difference 
on edge, I: Cabe Outer shell positive ions negative ions 

1 27 26 12 14 2 
2 125 98 50 48 2 
3 7 343 218 108 110 2 
4 9 729 386 174 172 2 
5 11 1331 602 300 302 2 

by cubing the number of ions, n, on an edge and subtracting from this the number 

of ions in all the inner shells. This number of ions in the inner shells is given by 

(n - 2)3_ These results, as well as. the numbers of ions of each charge, are summarized 
in Table 1 for the first few shells. From the results given in Table 1, it is readily 
apparent that in successive shells the number of positive and negative ions differs by 
two and that the ion present in the majority alternates in successive shells. 

Although the species in the majority depends upon the specific shell, the 
pattern of charge distribution can be predicted for any shell. The following method 
was developed utilizing cubical symmetry which makes it possible to consider one 
face of a cube and extend the results to three dimensions. The RI was chosen to be 
of unit positive charge although a negatively charged ion could also be used with 
modification of the equations. In the equations developed,’ the denominators represent 
the distances from the .RI to specific locations on cubical shells surrounding the RI 
in units of the length of a unit cell. The numerators of the equations include the sign 
of the charge on the ions and the number of equivalent ions on any particular shell. 
All ions in the crystal are assigned to one of seven regions and an equation is developed 
to express the contribution of the ions each region. Then, the Madelung constant is 
the sum of all these contributions. Equations to compute all the necessary terms in the 
Madelung expression are derived as follows. 

Figure 1 shows an extended array of ions in a sodium chloride lattice. On each 

of the six faces of a cubical shell there is a central ion and there are six equivalent 
central ions in each shell. These are labeled as area 1 in Fig. 1. The e!ectrostatic 
charge alternates in sign for each successive shell. 
bution of the six equivalent ions for any shell, S. 

co 6(- 1)’ 
4=C s 

S=l 
(1) 

Since every cubic shell has eight corners, there are eight ions on the comers of each 
cubic shell (area 2 in Fig. 1). Equation (2) represents this contribution to the Madelung 

Equation (1) represents the contri- 

constant. 

* 8(- 1)’ 
A,= c 

S=l w3 
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Suppose a line’is drawn from the center of any edge of a cubic shell to an ion 
on the center of that. face. Along that line are ions of alternating sign of charge 
(area 3 in Fig. 1). The number of such ions in each shell is a function of S and the 
contribution to A from these ions is given by eqn. (3). 

(3) 

Each cubic shell has twelve edges. There are twelve equivalent ions in each 
shell that are situated at the midpoints of the edges between any two adjacent corners 
(area 4 in Fig. 1). The contribution of these twelve ions in each shell is given by eqn. (4) 

A,= 212 
s=i SJ2 

(4) 

Along a diagonal line from the center of any face of a cube to any corner on 
that face there.are ions whose charge depends only on the shell, S. For one shell they 
are all positive and for the next they are all negative (area 5 in Fig. 1). Equation (5) 

gives the contribution of the ions in this area of the cubic shells. 

a (S-,1) 24(- 1)s 
A, =- c z 

S=l a=1 JS2 -I- 2a2 
(5) 

Along the edge of a cube from the midpoint of the edge to either adjacent 
comer there-are ions of alternating charge sign (area 6 in Fig. 1). Equation (6) gives 
the contribution of these ions to the Madelung constant. 

A6 = (6) 

Beginning with the shell S = 3, and for all subsequent shells, ions of alternating 
charges appear in the four quadrants of each face of the cube, both above and below 
the diagonals of those faces (area 7 in Fig. 1). The contribution from such ions 
becomes important for large values of S, and eqn. (7) takes into account these 
contributions to A. 

The Madelung constant is the sum of the contributions from ions in these seven 

areas of the lattice, each summed over an infinite number of cubic shells. 

A = .i Ai 
i=l 

RESULTS AND DISCUSSION 

The Madelung constant for the sodium chloride structure Was computed using 
eqns. (1-7). In the present work, the first 29 cubic shells were included in the calcula- 
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TABLE 2 

CALCULATED VALUES OF THE MADELUNG CONSTANT FOR SUCCESSIVE SHELLS8 

Shell, S A Shell, s A 

1 2.13352078 
2 1.51664634 
3 1.91250398 
4 1.61926968 
5 J-85253549 
6 1.65874229 
7 1.82454423 
8 1.67964125 

-9 1.80833819 
10 1.69257893 
11 .1.79776892 
12 1.70137660 
13 1.79033126 
14 1.70774735 
15 1.78481299 

16 
17 
18 
19 
20 : 
21 
22 
23 
24 
25 
26 
27 
28 
29 

1.71257368 
1.78055603 
1.71635648 
1.77717230 
1.71940117 
1.77441809 
1.72190458 
1.77213269 
1.72399928 
1.77020578 
1.72577779 
1.76855915 
1.72730669 
l-76713579. 

9 The value for a given shell includes the contribution from all shells of lower S. 

tion which thus takes into account the interactions of 24389 ions. The results obtained 
are shown in Table 2. It is apparent that this summation of interactions to obtain 
the Madelung constant is convergent. As each successive shell is included in the 
calcu’lation, the approximate Madelung constant alternates from a value above to a 
value below the correct one. .It can be shown by the ratio test that the series is ab- 
solutely convergent. 

As the number of shells becomes large, the computation becomes so slow that 
the computation was truncated. Figure 2 shows the variation in the computed value 

I I’ 

SHELL. S 

Fig. 2. The approximate Madelung constant obtained by summing the contributions of succeeding 
shells of ions. The contribution from all inner shells is cumulative. 
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Fig. 3. GraphicaI method for determining the mean values of the oscillating function. 

of the Madelung constant as the number of shells increases. Although the summation 
is convergent, the rate at which it converges is far too slow to be a practical method. 
The problem then is to determine the average value of this oscillating function. An 
attempt was made to represent the data points on either side of the true value by an 
exponkntially decaying sine wave. This attempt, however, was not successful. A 
second attempt, also unsuccessful, was to take an arithmetic average of these points. 
This procedure yields a value of 1.7565, the correct value being 1.7476 to the same 
number of decimal places. 

The most successful method we have found to obtain the asymptotic value of 
the oscillating function is a numerical one utilizing the point-slope equation of a 
linear function and arithmetic averaging. To illustrate the method, a group of seven 
approximate values for the Madelung constant were chosen. The values arbitrarily 
chosen were those obtained from the computation for the 17th through the 23rd 
she& (S = 17 to S = 23). Figure 3 shows the necessary geometrical reference for 
this technique. The point-slope method for determining the equation of a line was 
used to calculate the X and Y coordinates of the points B, C, and D. Next, the Y 
coordinate for point E was calculated by averaging the Y coordinates of points B 
and. C and that of point F by averaging those of C and D. Finally, point G was 
determined by averaging points E and F. Table 3 shows the numerical values obtained 
for these points with G representing the Madelung constant. The average value of the 

DATA USED IN THE 

17 THROUGH 23 
CALC~TION OF THE AVERAGE VALUE OF THE OSCILLATING FUNCrION FOR SHELLS 

Point X Coordinate. Y Coordinate 

B 19.1024 1.73770 
C 20.0974 1.75696 
D 21.0931. 1.73862 
E.. 1.74733 
F 1.74779 
G ._ 1.74759 
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Y coordinate obtained in this way is 1.74759 while the true Madehmg constant is 
1.74756 to the same number of decimal places. It is readily apparent that the use of a 
limited number of approximate values of the Madelung constant obtained by con- 
sidering a limited number of cubic shells can lead to an accurate value of the Madelung 
constant. It is also possible to use a smaller number of approximate solutions or to 
use shells of smaller S. For example, if the calculated values for shells S = 3 to S = 9 
are used, an- average value of 1.74721 results. This value is within 0.02’A of the 
correct valie and is obtained by considering only 729 ions instead of the 24389 ions 
considered in the first 29 shells. However, if shells S = 1 to S = 7 are used, the average 
value obtained is 1.78749. Obviously more accurate values are obtained by considering 
larger shells where the convergence is more rapid. 

The method described in this work appears to be capable of providing accurate 
values for Madelung constants with less computation than previous methods. We are 
currently extending this method to lattices df lower symmetry. 
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